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ABSTRACT   

Interferometric phase microscopy (IPM) enables to obtain quantitative optical thickness profiles of transparent  
samples, including live cells in-vitro, and track them in time with sub-nanometer accuracy without any external  
labeling, contact or force application on the sample. The optical thickness measured by IPM is a multiplication  
between the cell integral refractive index differences and its physical thickness. Based on the time-dependent optical 
thickness profile, one can generate the optical thickness fluctuation map. For biological cells that are adhered  
to the surface, the variance of the physical thickness fluctuations in time is inversely proportional to the spring factor 
indicating on cell stiffness, where softer cells are expected fluctuating more than more rigid cells. For homogenous 
refractive index cells, such as red blood cells, we can calculate a map indicating on the cell stiffness per each spatial 
point on the cell. Therefore, it is possible to obtain novel diagnosis and monitoring tools for diseases changing the 
morphology and the mechanical properties of these cells such as malaria, certain types of anaemia and thalassemia.  
For cells with a complex refractive-index structure, such as cancer cells, decoupling refractive index and physical 
thickness is not possible in single-exposure mode. In these cases, we measure a closely related parameter, under the 
assumption that the refractive index does not change much within less than a second of measurement. Using these 
techniques, we lately found that cancer cells fluctuate significantly more than healthy cells, and that metastatic cancer 
cells fluctuate significantly more than primary cancer cells.  
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1. INTRODUCTION 

Interferometric phase microscopy (IPM) provides unique advantages over conventional bright-field microscopy, having 
the possibility to record the optical thickness map of the sample without external labeling1. The optical thickness 
measured by IPM is a multiplication between the cell integral refractive index differences and its physical thickness per 
each of the sample spatial points. Using the time-dependent optical thickness profile, one can generate the optical 
thickness fluctuation map, indicating on rigidity of each of the cells in the field of view, which is useful for 
characterizing various diseases. For example, it was shown that wide-field IPM is useful for characterizing the cell 
stiffness changes in sickle cell disease2 and in cancer3. 

As opposed to atomic force microscope (AFM) or other force applying methods providing mechanical measurements 
of cells, IPM is a noncontact and completely nonintrusive technique that is able to record the entire complex wave-front 
(amplitude and phase) of the light which has interacted with the sample in-vitro by using a low-power coherent or 
partially-coherent light source, where no exogenous labelling or special sample preparations are involved.  

Using IPM, the quantitative phase profile of the sample is obtained by first capturing the interference between a beam 
going through the sample and a mutually-coherent reference beam that does not interact with the sample. The creation of 
interference pattern on the digital camera is possible using conventional interferometric setups, such as the ones based on 
Mach-Zehnder or Michelson interferometers, or using compact, portable, and easy-to-align interferometers that are more 
stable due to their common-path geometry4-6. The digital process is chosen according to the setup used. After the digital 
process applied on the acquired interferogram, the phase profile of the interferogram acquired at time t is defined as 
follows7: 
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 whereλ  is the illumination wavelength, mh  is the thickness of the cell growth medium, mn  is the refractive index of the 
medium, ch  is the thickness profile of the cell, and cn is the cell integral refractive index which is defined as follows: 
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We then define the standard deviation of the time-dependent phase profile as follows: 
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where 
t

•  denotes time average.  

For biological cells that are adhered to the surface, the standard deviation indicates on cell stiffness, where softer 
cells are expected fluctuating more than more rigid cells. For homogenous refractive index cells such as red blood cells, 
the standard deviation square is inversely proportional to the effective spring constant, which is related to the in-plane 
shear modulus of the cell8. Therefore, ),( yxSTD  represents a map indicating on the cell stiffness per each spatial point 
on the cell, using which it is possible to obtain novel diagnosis and monitoring tools for diseases changing the 
morphology and the mechanical properties of the cells such as malaria8, certain types of anaemia2 and thalassemia.   

For cells with a complex refractive-index structure, such as cancer cells, decoupling refractive index and physical 
thickness is not possible in single-exposure mode. In these cases, we measure a closely related parameter, under the 
assumption that the refractive index does not change much within less than a second of measurement. 
 

2. EXPERIMENTAL RESULTS 

In Ref. (3), we have performed IPM measurements on cancer and healthy cells in order to establish a cancer biomarker 
based on the unique optical-mechanical signatures of cancer cells measured in a noncontact, label-free manner by IPM.  
 Cell stiffness is a relatively new biomarker for cancer.  Lately, it has been shown using AFM that cancer cells are 
nearly four times softer than similar but healthy cells9. Although the contribution of the cell mechanical properties in 
invasion is not completely clear, it is possible that greater elasticity of cancer cells helps them metastasize by more easily 
squeezing through the body tissues and capillaries10-13.  
 Stiffness as a cancer biomarker is important for preventing false diagnosis using the conventional and subjective 
cancer identification that is currently performed under a regular optical microscope. However, AFM is expensive, hard to 
implement, and applies forces on the cell measured. In addition, AFM measurement alone can yield a wrong diagnosis, 
since cells might be less rigid due to reasons other than cancer. For these reasons, IPM has higher clinical potential for 
measurements of the mechanical properties of cancer cells. 
 For a valid comparison of the mechanical features of two types of cells, it is highly important that the cells are taken 
from the same donor and originated in the same organ. Cells from various organs or different donors have high 
variability of mechanical properties. The in-vitro model used in the study presented in Ref. (3) is consisted of two pairs 
of cell lines. The first pair of cell lines includes normal rat enterocytes named IEC-18 (non-transformed small Intestinal 
Epithelial Cells) as the control group, and cancer-transformed rat enterocytes (named R1, or IEC-18 Ras) as the 
experimental group, both taken from the exact same source – certain rat intestinal epithelium.  When the two types of 
cells were infused into healthy rats, only those rats that received the modified cancerous cells developed tumors14-17.  
Next, to measure the mechanical changes during metastasis, we used the SW-480 cell line derived from a primary human 
colorectal carcinoma, and the SW-620 cell line, containing colorectal adenocarcinoma cells derived from a lymph node 
metastasis of the same patient18,19.  
 For the IPM measurements, we implemented a portable, off-axis, common-path and low-coherence interferometric 
modules that can be easily connected at the output of a regular transmission microscope illuminated by a coherent or 
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described above and subtracting the average of the background of optical thickness profile, we obtained the final 
quantitative optical thickness profile of the sample (see example in Fig. 1(b) for the healthy cell). From each series of 
thickness profiles obtained for each cell, we calculated fluctuation STD map (see examples in Figs. 1(c) for the healthy 
cell and in Figs. 1(d-f) for cancer cells). As can be seen from these figures, the edges of the cells have significantly 
higher fluctuations than the inside of the cells, whereas inside the cells the fluctuations were significantly higher than the 
level of the background (cell medium) fluctuations in several discrete areas.  

The cell edges are digitally identified by a standard edge detection algorithm, which resulted in an average edge 
width coinciding with the spatial resolution limit.  Based on this identification, we compared two assessments: 
fluctuations on the cell peripheral edges, and fluctuations inside the cell, where only the higher fluctuations areas  
are taken into consideration by choosing the maximum values of the optical thickness maps in each assessment.  
To validate that the fluctuations are driven by biological phenomena and not by system stability problems, we measured 
15 µm polystyrene beads in water. Indeed, the fluctuation STD map in this case was all at the background level, 
including at the edges. 
 Using the process described above, we created a database of 22 rat intestinal epithelial cancer cells and 22 rat 
intestinal epithelial healthy cells. Fig. 2(a) shows the maximum fluctuation STD values for each assessment, where in 
both cases there is high statistical difference between the groups of healthy and cancer cells, as indicated by the low p  
 
 
 

 
 
Figure 2.  Results based on IPM measurements of rat intestinal epithelial healthy (IEC-18) and cancer (R1) cell lines (a,b), 
and human colorectal carcinoma primary cells (SW-480) and their metastatic version (SW-620) (c,d).  (a) Comparison 
between the maximum fluctuation STD values of the healthy cells and the cancer cells for the cell inside, excluding edges, 
*,p<0.0025, and for the cell edges only, **,p<0.0001. (b) Distribution of the maximum fluctuation STD values taken from 
the entire area of each cell from both cell lines. Cancer cells fluctuated significantly more than healthy cells.   
(c) Comparison between the maximum fluctuation STD values of the primary cells and the metastatic cells for the inside of 
the cell (without edges), ˟,p<0.005, and for the cell edges only, ˟˟,p<0.0003. (d) Distribution of the maximum fluctuation 
STD values taken from the entire cell area (inside and edges) of each cell from both cell lines (with p<0.0003 between the 
groups). Metastatic cancer cells fluctuated significantly more than primary cancer cells. For comparison between cell-line 
groups, we used p values obtained by a standard two-tailed unpaired t-test. Figure is modified from Ref. (3). 
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values (p<0.0025 for the inside of the cell and p<0.0001 for the edges only). Figure 2(b) shows the maximum fluctuation 
STD distribution for the entire cell area (inside and peripheral edges together). Validation measurements were performed 
using AFM (see data presented in Ref. (3)). 
 To check the potential of IPM to yield an indication of cancer malignancy, we carried out additional measurements 
using IPM for human colorectal carcinoma cells (SW-480) and their metastatic version (SW-620), and analysed them by 
the same methods described for the rat intestinal epithelial cells. Figures 1(e) and (f) show the fluctuation STD maps of a 
primary cancer cell and a metastatic cancer cell, respectively. Figure 2(c) shows maximum fluctuation STD values for 16 
metastatic cancer cells and 12 primary cells without the cell edge (with p<0.005 between the groups) and on the edges 
only (with p<0.0003 between the groups). Figure 2(d) shows the distribution of the maximum fluctuation STD values for 
the entire cell area. As can be seen from these figures, the groups of the metastatic cancer cells and of the primary cancer 
cells are well discriminated based on their fluctuations, where the metastatic cells fluctuate significantly more than the 
primary cells. 
 

3. CONCLUSIONS 

Interferometry can yield indications of cell mechanical properties by measuring the cell optical thickness fluctuations 
over a short period of time, where adherent cells that fluctuate more are assumed to be less stiff. Using compact and 
portable IPM setups, we have lately measured cancer and healthy cells and found that cancer cells fluctuate significantly 
more than healthy cells, and that metastatic cancer cells fluctuate significantly more than primary cancer cells. Our study 
shows the potential of IPM for aiding in diagnosis and monitoring of cancer and other diseases.  
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